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Novel Coupling Schemes for
Microwave Resonator Filters
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Abstract—This paper introduces novel coupling schemes
for microwave resonator filters. It is shown that higher order
filter characteristics can be obtained from lower order sections,
which are connected in parallel between the source and load, by
proper superposition of the individual lower order responses.
This property can be used in modular filter design by focusing on
separate sections of the filter one at a time. In addition, some of
these coupling schemes exhibit zero-shifting properties, whereby
transmission zeros can be shifted from one side of the passband
to the other by simply changing the resonant frequencies of the
resonators while keeping all the coupling coefficients unchanged.
Several novel filter designs of different kinds (microstrip, planar
waveguide cavity, and dual-mode types) are introduced to prove
the new method and to give an idea of the extended design
possibilities. Good agreement between measured, computed, and
synthesized results is demonstrated.

Index Terms—Bandpass filters, design, dual-mode filters, elliptic
filters, -path filters, resonator filters, synthesis.

I. INTRODUCTION

T HE synthesis and design of elliptic and pseudoelliptic
coupled resonator filters is important for channel separa-

tion components in modern communication systems. Filtering
structures for these systems are required to provide sharp cutoff
slopes, asymmetric responses, and equalized group delay. All
these features can be successfully achieved by filters with
transmission zeros at finite frequencies in the complex plane.

An examination of the synthesis techniques available in the
literature shows that elliptic and pseudoelliptic filters are con-
sidered as perturbed versions of the all-pole Chebyshev solution
for a filter of the same order, center frequency, bandwidth, and
ripple level. The perturbation, which takes the form of cross or
bypass couplings, is responsible for bringing the transmission
zeros from infinity to finite positions in the complex plane. In
particular, the coupling and routing scheme of these filters al-
ways include a main path in which theth and th res-
onators are directly coupled with relatively strong direct or main
couplings [1]–[5]. Fig. 1(b) depicts in principle the conventional
coupling scheme for a four-pole elliptic function filter design.
The relatively weak cross-coupling between resonators 1 and 4
is introduced to generate a symmetrical pair of finite transmis-
sion zeros. The direct couplings are stronger than the cross-cou-
pling term unless the transmission zeros are located very close
to the passband.
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Fig. 1. Coupling schemes providing transmission zeros at finite frequencies.
(a) Conventional two-pole and (b) four-pole filter designs. Pure parallel-path
solutions: equal number of parallel resonances [(c) two-pole and (d) four-pole
filter types], different number of resonance circuits [(e) three-pole]. Few further
structures providing new filter realizations [(f) three-pole and (g), (h) four-pole
filter types].

The ubiquitous direct coupling terms in microwave filters in
general and multimode ones in particular arguably makes the
design of these filters unnecessarily complicated at times. The
first of several points addressed in this paper is the investigation
of new coupling schemes for elliptic and pseudoelliptic filters in
which some selected direct coupling coefficients are not present.
These solutions, which may involve coupling the source and
load to more than one resonator, contain more than one main
path ( -path filters) for the signal between the source and load.
These paths may originate at the source and terminate at the
load [cf. schemes of filter examples in Fig. 1(c)–(e)] or originate
and terminate between internal resonators [cf. Fig. 1(f) and (g)].
There may also be noninteracting, as in parallel realization [6],
[7], or interacting through additional bypass or cross-couplings.
Some of these solutions can be used to design dual-mode filters
without intra-cavity couplings.
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The second point addressed in this paper relates to the search
for coupling schemes that allow modular design of higher order
microwave filters. It will be shown that the coupling topologies
introduced in this paper allow the filter designer to focus on sep-
arate sections of the structure at a time. The responses of the in-
dividual paths (sections) yield the response of the complete filter
by proper superposition. Consequently, these new solutions may
facilitate the realization of higher order filters by breaking them
down into separate parallel sections that are designed and tuned
separately and then interconnected at the interface ports.

The third point is the investigation of coupling schemes that
exhibit transformation properties, whereby some characteristics
of the response of the filter, such as its transmission zeros, are
controlled only by parameters that can be easily adjusted. For
example, we will show that some of these coupling schemes lead
to pseudoelliptic filters whose transmission zeros can be shifted
from one side of the passband to the other by simply changing
the resonant frequencies of the resonators while leaving all the
coupling coefficients unchanged.

II. SYNTHESIS PROBLEM

The model used for the set of coupled resonators is based on
the structure proposed by Atia and Williams with proper exten-
sion to include source/load–multiresonator couplings [4]. The
synthesis problem consists of determining the coupling coeffi-
cients, which are assumed frequency independent, and the fre-
quency shifts of the resonators such that the response of the
structure is identical to a prescribe elliptic or pseudoelliptic re-
sponse. To this end, we use the technique presented in [8]. In
this technique, the entries of the coupling matrix are used as in-
dependent variables in a gradient-based optimization technique
where a sufficient cost function is used. The generality of this
technique allows the investigation of new topologies for res-
onator filters. Details and some examples can be found in [8].

The first step in the synthesis is to select a coupling scheme
(topology matrix) that is known to generate the required number
of finite transmission zeros. This number can be determined
using the algorithm in [9]. The choice of the topology is ulti-
mately dictated by the limitations of the technology used for the
implementation. More specifically, we are interested in synthe-
sizing coupled resonator filters where some of the direct cou-
plings are zero. These topologies can be used, for example, to
eliminate intra-cavity couplings in dual-mode cavity filters.

Obviously, if the only concern were the elimination of some
specificdirectcouplings,theproblemwouldbearelativelysimple
exercise. What needs to be achieved is the elimination of selected
direct couplings without creating new cross or bypass couplings
that may not be realizable due to the constraints of a given tech-
nology.Onemaystillarguethateventhisgoalcouldbeachievedin
principle using a series of similarity transformations (rotations).
However, there is no known approach to determine such a series
beforehand ingeneral. Even when a specific sequence of trans-
formations isknown, itappliesonly tospecificcouplingschemes,
which is the case of some, if not all, of the coupling schemes in-
troduced in this paper. Within such an approach, the practicing
engineering is required to keep track of which sequence applies
towhichconfigurationorrelyontheexpertiseofahandfulof filter

specialists. Another important point is the fact that the analytical
approach using rotations can give only exact solutions. However,
approximate and arguably valid solutions may be found in cases
where exact solutions do not exist, as will be shown later. Conse-
quently,weapply the techniquedescribed in [8]where thedesired
topology is strictly enforced, in particular, the vanishing of spe-
cific main couplings.

III. Z ERO-SHIFTING PROPERTY

An interesting property of some of the coupling schemes in-
troduced here is the ability to shift transmission zeros from one
sideof thepassbandtotheotherbysimplyadjustingtheresonance
frequencies of the resonators without changing the coupling co-
efficients and without affecting the minimum in-band return loss
of the filter. This property can be used to design filters with ar-
bitrarily prescribed transmission zeros by cascading elemental
sections that exhibit this zero-shifting property. A “doublet” [cf.
Fig.1(c)],whichcontains tworesonatorsandgeneratesonetrans-
mission zero is an example of such an elemental section. Starting
from an elemental section with one transmission zero on a given
side of the passband, elemental sections with transmission zeros
on the other side of the passband can be designed by adjusting the
resonance frequencies of the resonators to move the transmission
zero and then fine optimize to finalize the design. Such a mod-
ular approach to filter design offers many advantages. First, the
sensitivity of the designed filters is reduced since each elemental
section controls only one transmission zero. Second, filters can
be designedbystarting from a single pre-designed elemental sec-
tion that acts as a seed. Nearly identical filter structures can be
used for generating transmission zeros at either side of the pass-
band without any change of the coupling structure.

The zero-shifting property of some of the coupling schemes
can be demonstrated rigorously using a model of the coupled
resonator filter. The proof is presented for the case of the two-
resonator filter shown in Fig. 1(c).

Let us denote by an entry of the coupling matrix that is
assumed frequency independent. The loop currents, which are
grouped in a vector , are given by a matrix equation of the
form [8]

(1)

Here, is a matrix whose only nonzero
entries are , is similar to the

identity matrix, except that , and
is the symmetric coupling matrix. The exci-

tation vector is . The low-pass prototype
normalized frequency is denoted by. Note that the coupling
matrix may have nonzero diagonal elements, which account
for differences in the resonant frequencies of the different res-
onators. The domain of validity of this model is explained well
in [4]. The transmission coefficient and reflection coeffi-
cient of the model are given by (load and source resistors

)

(2)

and

(3)



2898 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 12, DECEMBER 2002

In this particular case [see Fig. 1(c)], the inverse of the matrix
can be calculated analytically yielding the following result:

(4)

(5)

The constants in these two equations and the determinant
are given in the Appendix. From these expressions, it is obvious
that changing the signs of the diagonal elements of the coupling
matrix changes and into and

, respectively. In particular, the normalized frequency
of the finite transmission zero changes sign, i.e., it moves from
one side of the passband to the other. The same argument can
be used to show that the coupling schemes in Fig. 1(d) and (h)
also exhibit this property. Coupling schemes such as triplets,
which have been used at input and output of dual-mode filters
[10], [11], do not exhibit this zero-shifting property, as is easily
shown following the same argument. The same holds as well for
quadruplets.

IV. SYNTHESIS RESULTS

In the following, examples (additional to those given in [12])
are introduced in view of the outlined features above, namely,
implementation of zero shifting properties, parallel path filter
realizations, and new filter structures.

A. Two-Resonator Filter With One Transmission Zero

This two-pole filter example is based on the coupling scheme
in Fig. 1(c). The coupling matrix

(6)

exhibits identical values as given in [12, eq. (2)], but with dif-
ferent signs of the diagonal elements. The resulting response
(Fig. 2) provides a transmission zero above the filter passband
at a mirrored location compared with the respective response in
[12]. Thus, this design provides a first proof of the above-men-
tioned zero shifting property.

B. Three-Resonator Filter With Two Transmission Zeros

The second example is a three-resonator filter with two trans-
mission zeros in the upper stopband. The transmission zeros are
located at 12.1 and 12.4 GHz. The in-band return loss is 21 dB
and the bandwidth is 120 MHz centered at 11.99 GHz.

The coupling and routing scheme used for this design is given
in Fig. 1(e). Two separate paths between the source and load
comprise two resonators and one resonator, respectively. The
coupling matrix that corresponds to these specifications is given
by

(7)

Fig. 2. Two-pole filter response with transmission zero above the passband by
the change of resonance detuning.

The response of this coupling matrix, along with that obtained
from the filtering function, is shown in Fig. 3. The presence of
the two transmission zeros is evident.

It is interesting to examine how the transmission zeros are
brought about in this case. To this end, the responses of the two
separate paths in the coupling scheme are generated and plotted
simultaneously in Fig. 3. It can be seen that the transmission
coefficients are equal in magnitude at the positions of the trans-
mission zeros and that their relative phase there is 180. There
are other points in the passband and in the lower stopband where
the two transmission coefficients are equal in magnitude, but the
relative phase condition for the generation of a transmission zero
is not satisfied at these frequencies. It should be noted that there
is a restriction on how close to the passband the first transmis-
sion zero is due to the large value of in (7).

Although this structure does not exhibit the zero-shifting
property of the previous case, the two transmission zeros can
be shifted to the other side of the passband by changing the
sign of one coupling coefficient and detuning the resonators the
opposite way, i.e., changing the signs of the diagonal elements
of the coupling matrix. The resulting response is indicated by
the dashed line in Fig. 3(a).

A more detailed examination of the response of these two fil-
ters shows that the solution is actually not exactly equiripple
although the maximum deviation between the two in-band re-
turn loss minima is only 0.2 dB. This example shows that even
when an exact solution is not found, an approximate one may
be perfectly valid.

C. Four-Resonator Filter With Two Transmission Zeros

An example with two two-pole filter sections in parallel ac-
cording to the scheme in Fig. 1(d) is presented in [12]. It pro-
vides an elliptic function response without any detuning of the
resonances as the respective coupling matrix [12, eq. (3)] shows.
It is, however, worth pointing out that the fourth-order coupling
structure in Fig. 1(d) implements only symmetric responses with
two transmission zeros. Other four-pole designs with additional
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(a)

(b)

Fig. 3. Three-pole filter design according to schematic Fig. 1(e) and coupling
matrix (7). (a) Response of one- and two-pole sections in parallel (dashed line
shows response with changed signs in the coupling matrix—diagonal elements
and one coupling sign). (b) Single responses of separate one- (dashed lines) and
two-pole (solid lines) sections.

interacting couplings between the paths [according to coupling
scheme Fig. 1(h)] are also introduced in [12], satisfying the
identical elliptic function characteristic. These structures can
also be used for arbitrary location of two transmission zeros as
well. Note also that there are multiple solutions for the struc-
tures in Fig. 1(h) and Fig. 1(f). Some of these solutions are better
suited for applications where certain restrictions on the internal
coupling coefficients exist. Such restrictions can be easily han-
dled within the synthesis technique used in this study [8]. For
further details on these four-pole filter designs, the reader is re-
ferred to [12].

D. More Examples

For higher order filters, the pure parallel structures [see
Fig. 1(c)–(e)] can be extended with additional resonance
circuits in both or either one of the paths or by introducing
additional paths. Another extension of design possibilities is

Fig. 4. Principle layout of two-pole stripline filter according to scheme
Fig. 1(c).

obtained by introducing these basic structures [cf. Fig. 1(c)–(e)]
as subsections in the main path of an overall filter. Thus, the
parallel paths will no longer be interconnected between source
and load. Fig. 1(f) and (g) shows two examples out of the
variety of new possibilities. Both structures will provide one
transmission zero at either side of the passband. Note that the
noninteracting paths do not originate at the source and termi-
nate at the load, as in the previous examples. The description
of two quite different implementations below—using those
structures—will provide an impression of the extended design
possibilities and flexibility of the new approach.

An important point in extending the structures presented here
to higher order filters relates to the sensitivity of these solutions
and their limitations as to what type of transfer functions can a
given coupling scheme implement exactly. These issues are not
addressed in this paper, but will be the subject of a future paper.

V. IMPLEMENTATION

This new coupling method is not restricted to a special kind
of filter realization. Therefore, different implementations are
discussed for some design examples based on the coupling
schemes above (cf. Fig. 1) to highlight new possibilities.

A. Two-Pole Microstrip Filter

The first example is a second-order filter with one transmis-
sion zero designed in microstrip technology. The width of the
microstrip lines is 0.508 mm, the thickness of the substrate is
0.508 mm, and the dielectric constant is 10. These values are
approximately those of a 50-line.

The main difficulty in realizing such a filter in microstrip
is the implementation of the negative coupling coefficient as
needed for a design according to coupling matrix equation (6).
A simple solution is the utilization of transformation properties
of higher order mode resonators, similar to that introduced for
waveguide resonator filters in [13]. We, therefore, use one res-
onator of the type and one of the type, resulting in a nega-
tive coupling sign in one path. Fig. 4 shows the principle layout
of such a filter. This particular layout was chosen since it allows
easy control of the resonant frequencies of the two resonators
by simply adjusting the lengths of the vertical branches without
affecting the coupling coefficients.

The response of such a filter is shown in Fig. 5. These results
were obtained from the commercial software package IE3D
from Zeland Software Inc., Fremont, CA. The presence of
the two reflection zeros, as well as the transmission zero, is
obvious.

To confirm the zero-shifting property of this structure, the
vertical lengths that control the resonant frequencies of the two
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Fig. 5. Response of microstrip filter with one transmission zero in the lower
stopband.

Fig. 6. Response of microstrip filter with one transmission zero in the upper
stopband.

resonators were adjusted to move the transmission zero to the
other side of the passband. All the remaining dimensions were
left unchanged. Fig. 6 shows the response of the resulting filter.
It is obvious not only that the transmission zero has moved to
the other side of the passband, but that the minimum in-band re-
turn loss has not been affected—thus validating the zero-shifting
property of this structure.

B. Two-Pole / Dual-Mode Cavity Filter

This design is based on the same coupling structure as the mi-
crostrip type, however, it is realized by a / rectan-
gular dual-mode cavity at 12 GHz (100-MHz equiripple band-
width, 20-dB return loss). Both resonances are simultaneously
coupled via irises with a vertical offset from the center cavity
location with waveguide interface ports (cf. sketch of the geom-
etry in Fig. 7). Consequently, different transformation properties
of resonance modes between input and output account for the
opposite signs in the two separate signal paths. Note that there
is no intra-cavity coupling of the resonances. The design of the

Fig. 7. Two-poleTE /TM dual-mode filter, coupling matrix, geometric
structure, (dashed lines) synthesized, and (solid lines) analyzed response.
(Dotted lines: analyzed response with only changed cavity length and width
dimensions.)

Fig. 8. Three-poleTE filter geometry according to the scheme of Fig. 1(f).

physical filter structure has been performed to satisfy the syn-
thesized response (dashed lines and coupling matrix) in Fig. 7.
The results of the computation with a mode-matching method
yield good coincidence of synthesized and analyzed responses
up to three times the filter bandwidth below and above the pass-
band. The increasing deviation of the responses outside that fre-
quency band can be attributed to the mode dispersion effects of
the cavity.

The zero shifting property has also been verified by this struc-
ture by only changing the width and the length of the cavity. The
dotted lines show the response of that filter, which corresponds
to the predicted characteristic with the transmission zero above
the passband.

C. Three-Pole Waveguide Cavity Filter

This filter design is based on the coupling scheme in
Fig. 1(f). It has been realized at 38.42 GHz (60-MHz equiripple
bandwidth, 20-dB return loss) with one transmission zero at
38.25 GHz—using -mode cavities. The cavity structure
is depicted in Fig. 8. The input waveguide is short circuited at
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Fig. 9. Measured (solid line) and synthesized (dashed lines) responses of the
three-poleTE cavity filter.

one end and couples via inductive irises the first field maximum
of the cavities 1 and 2 of the filter at its sidewalls.
Inductive irises are also used to couple these cavities with
the third cavity, which is aligned on axis with the interface
waveguides. To account for the needed different coupling
signs in this filter section, the transformation properties of

mode are utilized, i.e., the third maximum of cavity 1 is
coupled to the first one of cavity 3, while the second maximum
of cavity 2 is also coupled to the first maximum of cavity 3
(cf. [13]). The wall of cavity 3 opposite to the input interface
location of the filter is facing the output waveguide via an iris.
This filter has been designed using a mode-matching method.
Based on these results, it has been realized with tuning means
for couplings and resonances, which is common for filters
with such extreme narrow bandwidth (0.2%). Measured and
synthesized responses, depicted in Fig. 9, agree closely and
also prove the design approach. The zero shifting property can
also be verified by this structure, which is mainly attributed to
the detuning of cavities 1 and 2.

D. Four-Pole Dual-Mode Filter

The last example concerns the description of a four-pole
dual-mode in-line filter design according to the coupling struc-
ture shown in Fig. 1(g). The principle geometry and assignment
of the degenerate cavity modes to the filter resonance
circuits is displayed in Fig. 10.

The waveguide modes at the rectangular waveguide in-
terface ports are coupled via inductive irises with the res-
onance modes (exhibiting the respective polarization) of the ad-
jacent cavities that represent filter circuits and . The main
signal path of the filter is split into two parallel sections between
resonance circuits and . Thus, one of the two separate sec-
tions is formed by the resonance circuit with the dedicated
couplings and , and the second one consists of reso-
nance circuit with assigned couplings and . Hence,
resonance circuit is simultaneously coupled to the degen-
erate mode (with orthogonal polarization) of the same
cavity (representing ) by a screw (not shown in Fig. 10) and
the respective mode of the adjacent cavity (having

Fig. 10. Principle structure for a four-pole dual-mode filter design according
to the scheme of Fig. 1(g).

the same polarization) by an iris . Resonator is cou-
pled in the same manner with by a screw and by an
iris.

The second resonance circuit is represented by the orthog-
onal polarized degeneracy of the first physical cavity. However,
the third resonance is dedicated to that degeneracy of the
second cavity having the same polarization as the first resonance
circuit , in contrast to state-of-the-art dual-mode filters,
where first and third resonance circuits exhibit orthogonal po-
larization. It should be noted that this new four-pole filter struc-
ture provides input and output waveguide ports with perpendic-
ular alignment (due to the orthogonal polarization of first and
fourth resonance circuits) in contrast to a conventional four-pole
dual-mode filter design (cf. [4]).

This particular design allows the realization of one trans-
mission zero arbitrarily located below or above the filter pass-
band—which can also be tuned to either side of the passband
by the zero shifting property. Consequently, it is substantially
simpler than that given by Cameron in [14].

Please note, inter-cavity iris couplings are only performed be-
tween equal polarized modes (there is no coupling be-
tween the two main coupling paths, i.e., resonance circuits 2 and
3), which allows plain iris designs—in contrast to Cameron’s
design, which needs special angular aligned irises between the
dual-mode cavities [14].

VI. CONCLUSIONS ANDOUTLOOK

Novel solutions to the synthesis problem of coupled resonator
elliptic filters have been presented. A salient feature of these so-
lutions is the fact that some of their direct (main) couplings are
zero. These solutions contain two or more main paths for the
signal between the source and load. It is shown that higher order
filter responses can be obtained by separate parallel connected
lower order filter sections between source and load ports due to
proper superposition of the different responses of the individual
sections. Special parallel filter sections with zero shifting prop-
erties may be implemented in higher order filter designs to facil-
itate the design of arbitrary filter responses. Some design exam-
ples and descriptions dedicated to different realizations—from
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microstrip to dual-mode cavity filter types—give a small im-
pression of the broad spectrum of new possibilities offered by
the introduced method.

APPENDIX

Here, we give the expressions of the coefficients in the scat-
tering parameters given in (4) and (5).

We assume that the coupling matrix is of the form

(A.1)

Using this matrix, the coefficients in (4) and (5) are given by

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

From these equations, it is evident that changingand into
and changes themagnitudesof and ,

as given by (4) and (5), into themagnitudesof and
, respectively.
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